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We propose a simplified theory of a viscous layer in near-wall turbulent flow that 
determines the mean-velocity profile and integral characteristics of velocity fluctua- 
tions. The theory is based on the concepts resulting from the experimental data 
implying a relatively simple almost-ordered structure of fluctuations in close proximity 
to  the wall. On the basis of data on the greatest contribution to transfer processes 
made by the part of the spectrum associated with the main size of the observed 
structures, the turbulent fluctuations are simulated by a three-dimensional running 
wave whose parameters are found from the problem solution. Mathematically the 
problem reduces to  the solution of linearized Navier-Stokes equations. The no-slip 
condition is satisfied on the wall, whereas on the outer boundary of a viscous layer the 
conditions of smooth conjunction with the asymptotic shape of velocity and fluctua- 
tion-energy profiles resulting from the dimensional analysis are satisfied. The formu- 
lation of the problem is completed by the requirement of maximum curvature of the 
mean-velocity profile on the outer boundary applied from stability considerations. 

The solution of the problem does not require any quantitative empirical data, 
although the conditions of conjunction were formulated according to the well-known 
concepts obtained experimentally. As a result, the near-wall law for the averaged 
velocity has been calculated theoretically and is in good agreement with experiment, 
and the characteristic scales for fluctuations have also been determined. The developed 
theory is applied to  turbulent-flow calculations in Maxwell and Oldroyd media. The 
elastic properties of fluids are shown to lead to  near-wall region reconstruction and its 
associated drag reduction, as is the case in turbulent flows of dilute polymer solutions. 
This theory accounts for several features typical of the Toms effect, such as the 
threshold character of the effect and the decrease in the normal fluctuating velocity. 
The analysis of the near-wall Oldroyd fluid flow permits us to elucidate several new 
aspects of the drag-reduction effect. It has been established that the Toms effect does 
not always result in thickening of the viscous sublayer; on the contrary, the most 
intense drag reduction takes place without thickening in the viscous sublayer. 

1. Introduction 
A viscous sublayer plays an important role in transfer processes occurring in 

turbulent near-wall flow. Maximum values are attained here for the gradients of 
average velocity, temperature and concentration, for the relative fluctuation ampli- 
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tudes, and even for the absolute fluctuation energy near the external boundary. On 
the other hand, the proximity of a wall where the no-slip conditions should be met 
exerts an ordering effect on the fluctuational motion, leading t o  the appearance of 
‘ coherent structures ’ near the wall in the form of streamwise stretched vortex roll-ups. 
Townsend (1956) was apparently the first to emphasize the role of ‘large structures’ 
for the construction of simple models and their main contribution to a turbulent 
transfer. Detailed experimental visual and electrochemical studies were initiated by 
Kline et al. (1967), Mitchell & Hanratty (1966), Corino & Brodkey (1969) (see also the 
review of Davies & Yule 1975). The effect of these structures on the statistical charac- 
teristics was studied by Repik, Sosedko & Tropinina (1975) and Khabakhpasheva 
et al. (1975). 

Certainly the vortex roll-ups observed in a viscous sublayer are not stationary 
structures, but are akin to flapping flags. Nevertheless, they have definite dimensions 
reproduced experimentally with a slight scatter. In  universal scales (constructed 
according to the kinematic viscosity v and velocity v* = (rw/p)$,  where rw is the wall 
shear stress and p is the density), the characteristic length of a roll-up is N lo3 and the 
frequency N 0.1. Measurements of two-dimensional fluctuation spectra performed by 
Morrison, Bullock & Kronauer (1971) indicate that the velocity of disturbance con- 
vection does not depend on the distance from the wall, i.e. the motion resembles a 
running wave. 

If the aim is not the detailed analysis of the fluctuation motion but the theoretical 
calculation of the averaged velocity field, then, bearing in mind that the main con- 
tribution to the transfer processes is made by the large-scale part of the spectrum, the 
fluctuations can be represented schematically as a running three-dimensional wave. 
Hence the problem of the developed theory is, using this elementary model, to obtain 
the near-wall law of velocity variations and to determine the wavenumber and the 
frequency of fluctuations. 

A theoretical analysis of the motion in a viscous sublayer was carried out in several 
studies, beginning with the works of Einstein & Li (1956) and Sternberg (1962) per- 
formed in terms of the Stokes equations. Convection terms were taken into account 
by Schubert & Corcos (1967). Specific features of the turbulent flow in a viscous 
sublayer were studied by Kader (1970) and Geshev (1974). 

Vortex roll-ups in terms of the complete Navier-Stokes equations were calculated 
by Sadovskii, Sinitzyna & Taganov (1975) and Hatziavramidis & Hanratty (1979). 
We will not go into details of these studies, but will note only that they all dealt with 
the empirical numerical data, being the integral part of the models considered. In  the 
present paper we omit any explicit empirical numerical data. 

In  terms of the formulated theoretical approach, it appeared possible to describe 
properly the average velocity distribution and some characteristics of the fluctuational 
motion. To check the applicability of the model in a wider range, it was applied to a 
theoretical analysis of the drag reduction in a turbulent flow of polymer solutions - the 
Toms effect (Toms 1948). Here the non-Newtonian character of the medium was taken 
into account using the Maxwell and Oldroyd rheological models. In terms of the 
viscoelastic fluid model, the developed theory permits us to describe properly the 
main features of the drag reduction. 

I n  Q 2 the problem is formulated for Newtonian liquids. Section 3 represents algo- 
rithms for a numerical solution of the formulated problem. In  Q 4 theoretical results 
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are discussed and compared with experiments on the near-wall flow of the Newtonian 
fluid. I n  $ 5  on the basis of the formulated model theory the near-wall turbulent 
viscoelastic fluid flow is analysed, and a comparison between theory and experiment 
on drag reduction in dilute polymer solutions is given. Section 6 extends the analysis 
for the case of the Oldroyd viscoelastic fluid having stress relaxation and retardation 
times. 

2. Model formulation 
A turbulent plane-parallel, on the average, flow near a smooth wall is considered. 

It is convenient to write down the Navier-Stokes equations separating the averaged 
and fluctuating velocity components 

av, av, av, -+-+- = 0, ax ay ax 

I - - -  
VU’ = v: +v,v,; v,vz = vxvz = 0. 

x- and y-axes were chosen respectively in the streamwise direction and normal to the 
wall; a bar denotes averaging wit,h respect to the uniform variables x, z and t ;  a prime 
denotes differentiation with regard to y .  

( a )  The first simplifying assumption is that in the first three equations of (2.1) the 
nonlinear-fluctuation terms are removed, the mean-velocity profile is taken as linear 
U = U& y ( U k  = v:/v) and the solution is found in the form 

This assumption is based (i) on the fact that, owing to the no-slip condition, in close 
proximity to the wall the velocities are small, and (ii) on the conception that the 
decisive contribution to the transfer process is from the momentum of the fundamental. 
Certainly, with increasing distance from the wall the neglect of nonlinear terms 
becomes less and less justifiable and can lead to significant errors. But, we believe, 
this disadvantage can be removed by taking the appropriate conditions on the outer 
boundary of the viscous layer to have a nonlinear character. A fluctuation regime is 
approximated by the sum of two oblique waves (2.2) with opposite sign of p. In  this 
case the last two equations of (2.1) are satisfied automatically. 

( b )  The second reasonable aspect in the model problem is the formulation of the 
conjunction conditions on the outer boundary of a viscous region which is a priori 
considered to be unknown and is found from the solution. For this purpose let us 
consider the asymptotic behaviour of the profile of the mean velocity U and of the 
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fluctuational motion energy E = v$+v; +vi = 1.1 + 1.1 + 1wI far from the wall (at 
y- too) .  Since the effect of viscosity can be neglected, for reasons of dimensionality it 
follows that U' = v*/Ky, where K is a dimensionless constant. After integration we 
obtain the known logarithmic distribution 

(2.3) v* U = -lny+B. 

By using the Reynolds equation (the fifth in (2.1)), we obtain the expression for 
turbulent stresses -v,vy = vi [I - l / ~ y + ] ,  where y+ = yv*/v. Naturally, the asymp- 
totic expression for the energy will be the same: 

K 

- 

where E, and K~ are unknown dimensionless constants. Upon excluding the constants, 
we obtain a differential form of the asymptotic laws: 

(~77')' = 0, (YE)" = 0. (2.5) 

After substituting (2.2) into (2.1) and eliminating the pressure, we get a system of 
ordinary differential equations for the amplitudes: 

v " - ~ ' v  = 8, k2 = a2+P2, y e N - [ ~ k 2 + i a ( v , y + - ~ ) ] 8  = 0, (2.6) 

On the wall the no-slip conditions are met: 

v(0) = v'(0) = w(0) = 0. (2.7) 

Far from the wall the conditions without any viscosity effect are set, resulting from 
(2.6) provided that v = 0: 

Generally speaking, the conditions (2.5) and (2.8) should be satisfied asymptotically 
as y+ -+ CQ, but here, in a similar manner to the met'hods of boundary-layer theory, they 
will be displaced a finite distance from the wall y+ = R, where R can be treated as 
Reynolds number constructed according to the thickness of the viscous region and 
the shear velocity v*. 

Now it will be convenient to write down the above equations in dimensionless form, 
retaining the same designations: 

(2.9) 

v"- k2v = 8, 8" - [k2+ i ~ ( y +  - c ) ]  8 = 0, 
iP 

W"-  [kZ+ia(y+-c)]w = -{8 ' - iu[(y+-c)v ' -v]) ,  
k2 

(y+U')' = 0, (y+E)" = 0 at y+ = R, (2.10) 

U' = l+urv,+uivi ,  u = i(v't-/?w)/a: (2.1 1) 
where 

(indices r and i denote real and imaginary parts of the complex amplitudes). 
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Equations (2.9) include a system of sixth-order linear equations and five boundary 
conditions. For given values of a, p, c and R a solution can be found accurate to a 
constant complex factor, whose argument can be left arbitrary, since it does not 
influence the calculation of mean characteristics. The factor module is determined 
from the first condition (2.10) which is of inhomogeneous character owing to (2.11). 
The second condition (2.10) can be used to determine R. The determination of the 
parameters a, /3 and c requires three additional conditions. 

(c) Formulation of these conditions is the third model assumption which is based 
on the reasons of stability. Goldshtik (1968) suggested a hypothesis implying that the 
averaged turbulent motion is maximally stable to the external disturbances. On the 
other hand, it is known that the presence of inflection points in the velocity profile 
(see e.g. Goldshtik & Shtern 1977) can cause instabilities. The most sensitive in this 
respect is the point of conjunction of viscous and external regions. Therefore, let the 
conditions of conjunction along the mean-velocity profile a t  yf = R be set so that the 
derivatives up to the fourth can be continuous: 

(y+U’)” = 0, (y”)”’ = 0. (2.12) 

It will permit us to determine two more parameters, namely a and c. Finally, let 
us demand that the velocity-profile curvature be maximum: 

(2.13) 

Now the totality of (2.9)-(2.13) will be a closed problem whose solution should 
determine all entering functions and parameters. 

Despite the above arguments, it should be said that the assumptions (a)-(c) do not 
follow unambiguously from the general reasonings, and contain arbitrary elements. 
The choice of just these conditions of conjunction is based on the agreement with 
experiment. Hence the formulation of the problem can be considered to a certain 
extent as empirical. Nevertheless, its advantage over the previous approaches is that 
it does not apply any u priori empirical information of a quantitative character. 

3. Algorithm of solution 
The problem (2.9)-(2.13) was solved numerically, the sequence of operations 

corresponding to the main steps of the formulation. 
At constant values of the parameters a, and c, (2.9) are first integrated. The 

solution of the second equation of (2.9) can be represented analyt,ically through the 
Airy function 0 = D Ai (a-g[[kz+ ia(y+ - c ) ] ) ,  which at large y+ decreases according to 
the law cc exp [ - (2a)4/3( 1 + i )  (y+ - c)Z]]. Practically, the same solution can be 
obtained by the numerical integration of the Cauchy problem with the initial data 
@(R) = 0,  0’(R) = 4. The latter condition is the intermediate normalization, and the 
final value of D (or D,) is calculated in what follows. Then a Cauchy problem is inte- 
grated for the first equation of (2.9) with the initial conditions v(0) = v’(0) = 0 using 
the Runge-Kutta method with a constant step h = 0.5. Then a boundary-value 
problem is solved for the function w (2.9) using a difference factorization method, 
and from (2.11) the function u is determined. Hereby, the function E(y+) is found, 
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aside from an unknown factor. E(  y+) increases from zero at y+ = 0, attains a maximum 
and then begins to decrease. The value of R is determined as the y+ value a t  which, 
for the first time after the maximum E ,  the condition (y+E)” = 0 is satisfied. Now the 
factor D can be calculated from the condition: 

[y+( 1 + Ur ~r + ~ i z i i ) ] ’  = 0 a t  y+ = R. 

After multiple repetition of the above procedure for various values of cc and c, we 
choose them using a Newton method, so that the conditions (2.12) be satisfied. Finally, 
the most external procedure is the search for the /3 value a t  which (2.13) is fulfilled. 
The mean-velocity profile U(y+) is determined by integration of the first equation 
(2.11) with the initial condition U ( 0 )  = 0. 

4. Calculation results 
The parameters used to solve the problem are 

CL = 0.00212, /3 = 0.000136, c = 35.8, R = 31.9, w = CLC = 0.076. (2.14) 

Constant,s in t,he asymptotic equations (2.3) and (2.4) are found from the obt’ained 
solutions using the formulas 

v 

1 
B = U(R)--lnR, 

1 
K = -  

RU‘(R)’ K 

E(R) -k RE’(R) 
R2E’(R) ’ 

= 
R +  l / ~ ~ *  

K1 = - 

Their calculated values are 

(2.15) 

K = 0.405, B = 5.6, K~ = 0.23, El = 88. (2.16) 

The first three values are in good agreement with the experimental results of Laufer 
(1954) and Lawn (1971), and the fourth is significantly higher than the experimental 
value. 

A comparison of the theoretical ‘wall law’ for the mean-velocity profile with the 
experimental data is given in figure 1. The solid curve 1 accounts for the theory. The 
conjunction point is marked by a cross. The dashed line 2 illustrates an analytical 
continuation of the velocity profile beyond the conjunction point. The curve 3 repre- 
sents the linear law U = y+, and the straight line 4 is the logarithmic velocity dis- 
tribution with the calculated constants K and B. The shaded region shows the scattering 
of Laufer and Lawn’s experimental data. The points are the experimental data of 
Khabakhpasheva et al. (1975) for velocity measurements in the viscous layer. 

The agreement between theory and experiment regarding the velocity profile is 
good, whereas with respect to the velocity fluctuations it is only of a qualitative 
character, which is confirmed by figure 2. Solid curves account for the theoretical 
threefold reduced values IuI, 1211, I W I  , dashed lines correspond to the Laufer’s data and 
points (1’- JuI, 2‘- [TI], 3‘- Iwl) were taken from the experimental data of Khabakh- 
pasheva et al. This quantitative discrepancy is quite clear, and is associated with a 
rough schematic representation of fluctuational motion. Note, however, that  the 
position of the E(y+) maximum a t  y+ = 14, agrees fairly well with experiment. 

According to the calculation, the amplitude of pressure fluctuations is practically 
constant throughout the viscous layer, which is in agreement with Corcos’ theoretical 
and experimental analysis. 
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FIGURE 1. Mean-velocity profile near wall: 1, calculation; x , conjunction point; 2, analytical 
continuation of the calculated profile; 3, linear law; 4, logarithmic law; shaded part shows 
experimental data of Laufer (1954) and Lawn (1971); 0 ,  data of Khabakhpasheva et aE. (1975). 

The theoretical fluctuation frequency w and the longitudinal scale r /a  coincide in 
order of magnitude with experiment. At the same time, visual observations indicate 
that the width of vortices are an order of magnitude smaller than their length, and the 
calculated values are in the reverse ratio alp = 16. This, however, can be explained. 
The spectral analysis performed by Corcos, indicates that the disturbances with 
a B p and a < p are predominant; hence the spectrum is concentrated near the axes. 
A numerical calculation shows that the disturbances with a 9 p make a significantly 
greater contribution to  the Reynolds stresses, thus playing the main role in the 
formation of the mean-velocity profile. But in visual observations the disturbances 
from the other spectral region with a < p are more distinct. 

Thus, in terms of the above model it is possible to calculate the theoretical distribu- 
tion of the mean velocity and intensities of fluctuations in t'he near-wall turbulent 
flow. Here the velocity profile in a viscous region and the constants for its logarithmic 
region are calculated. The results are in good agreement with experiment. 

What is the field of applicability of the suggested model? Can it be applied to 
calculate other more-complicated problems concerning near-wall flows ? To a certain 
extent the answer can be the theory of a turbulent near-wall flow of viscoelastic fluid 
described below, being of interest in relation with the problem of drag reduction in 
dilute polymer solutions. 

5. Drag reduction in Maxwell fluid 
At present much attention has been given to the problem of drag reduction in a 

turbulent flow of fluids containing small polymer additives. Since the drag is signifi- 
cantly reduced a t  small concentrations of additives when the viscosities of solution 
and water are practically the same, the determination of the non-Newtonian properties 
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of dilute solutions responsible for the drag reduction in turbulent flows is a very 
complicated problem. One of the earliest approaches to the Toms-effect interpretation 
is the hypothesis of the decisive role of elastic properties of polymer solutions, first 
suggested, apparently, by Metzner & Park (1964). But a t  present there is no single 
point of view on the insight into the mechanism of the drag reduction. Various 
approaches are based on different rheological models of the tested solutions. But it is 
very difficult to prove empirically the adequacy of any of these models. 

The available semi-empirical models are not suitable for the choice of a rheological 
model as well, since the dependence of the empirical constants on the rheological 
properties is unknown, and can be different for different media. Therefore the model 
theory described in previous sections is advantageous, since it does not involve any 
empirically determined constants. I n  this connection, the effect of different rheo- 
logical properties of fluids on the near-wall turbulent flow will be studied on the basis 
of the developed sinusoidal theory. 

For a previous qualitative analysis we will apply a model of the Maxwell viscoelastic 
fluid generalized by Oldroyd ( I  950) for the case of arbitrary deformation. In Cartesian 
co-ordinates it can be written as 

where Cij is the deviatoric stress tensor, V, = {E, V,, V,} is the instantaneous velocity 
vector, and h is the time of stress relaxation. The system (5.1) in combination with the 
momentum and continuity equations 

a x  a6 ap axia av, -+v- = -- +-, 
at ,ax, axi ax, ax, 

- -  - 0  

forms a closed system. 
Let us consider a problem on the turbulent flow of viscoelastic fluid along an infinite 

flat plate for which the no-slip conditions and the mean shear stress are set. At infinity 
it is demanded that the effects of viscosity and elasticity on mean and large-scale 
characteristics will be absent. It means that we will consider the Prandtl problem for 
a Maxwell fluid. Given values are shear velocity v*, viscosity u, and relaxation time A. 
They can be used to constitute two scales of length, i.e. viseour v/v* and elastic v,h; 
hence in terms of the dimensional theory the mean velocity gradient is 

This representation is typical of the multiple-scale method. If the distance y from the 
wall is much greater than both viscous and elastic scales, the velocity gradient will 
be independent of these scales (owing to the arbitrariness of K ,  it can be assumed that 
f(m, m) = I), which leads to  the logarithmic velocity distribution. 

Now let us consider the behaviour off  at small values of the arguments. After 
expansion into the Taylor series 

V* Y Y 
v* 

f = fo + T f l l +  -f1z + . * * , 

and satisfaction of the condition d U / d y  = v$/v a t  y = 0, we obtain f,, = fiz = 0, 
fll = K. 'VVlience it follows that, when only the second argument tends to zero, f does 
not reduce to zero but has a finite limit depending on the first argument. 
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FIGURE 2. Intensities of velocity fluctuations: 1, IuI ; 2, 1 ~ 1 ;  3, IwI. -, calculation (threefold 
reduced); ----- , data of Laufer (1954); @, A, 0, data of Khabakhpasheva et al. (1975). 

If the elastic scale is much greater than the viscous there exists a range of y values 
when the first argument can be considered to  be infinite and the second to be equal to 
zero. It means that in this range the velocity also follows the logarithmic law, but 
generally speaking with other values of the constants. Theoretical conceptions in 
favour of the existence of an intermediate logarithmic region in the turbulent flow of 
polymer solutions were given by Gorodtzov & Belokon (1973). 

Similar conceptions can also be given for the energy distribution of turbulent 
fluctuations. The existence of an intermediate asymptotic region permits us to apply 
the conjunction conditions described in 9 2 and to  close the viscous-layer problem for 
a non-Newtonian fluid as well. 

As above, let us represent the fluid motion as a sum of the fluctustional {va, uij ,p}  
and averaged {c, ??tj, p }  flows. Taking into account thht among the components of 
only the longitudinal velocity vz = U ( y )  is not equal to zero, the generalized Reynolds 
equations for Maxwell fluid will be written in the dimensionless form 

Here A = hvz/u is the dimensionless time of relaxation. 
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After the removal of the terms that are quadratic with respect to fluctuations, the 
system of equations for a fluctuational motion will take the form 

- - U" + ~x 'u '  + (x" + 2xt2 - k2) u + - X' [v" + 22'2.'' + (2'' + 2x" - k2) V ]  

%"X +- 22'' v ' - 7  1 ( x ~ ~ ~ - x )  2x'x" 0, 
tax aa 

iaX( U - c)  v t xp' = v" t 2x'v' + (x" + 2xt2 - k2) v, 
iax( U - c)  w + ipxp = w" + 2x'w' + (2'' + 2 x f 2  - k2) w, 

Stress fluctuations ugi as well as fluctuations va, p ( 2 . 2 )  will be roughly approximated 
by the sinusoidal self-oscillations 

(5.4) aij = w[crij (y+) TI, T = 2)exp [ifax+ +pz+) - iact+]. 

After substitution of ( 2 . 2 )  and (5.4) into (5.3), a system of ordinary differential equa- 
tions for the complex stress amplitudes can be obtained 

ullx = 2iau+2A(U'u'+ U ' ~ J ~ , + ~ ~ ~ A U ' ~ U - ~ A U ' U ' ' V ) ,  

a12x = u' + iav + A( iaU 'u  + U'vZ2 + U'v' - U"v' + 2iaA Ut2v)  I 

' (5 .6 )  

aZ2x = 2 ~ '  + BiaAU'v, 

f ~ 2 3 ~  = ipv  + W' + iaA U'w, 

' ~ 1 3 ~  = ipu + iaw +A( U'f~23 + U'w' + 2iaUt2w), 

I V" + ~x ' v '  + ( 2 ~ "  - k2) v - $ = 0,  

W" + 2x'w' + [ Z X ' ~  - k2 - iaX(y+ - c)]  w = @ - icrx[(y+ - c)  v' - v] 

i 
U = a (v' + ipw),  
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0 FIGURE 3. Factor K of the logarithmic mean-velocity profile in ‘buffer’ region, 

Hence the fluctuational motion near the wall is determined by integrating (5.7), whose 
boundary conditions imply no slip on the wall (2.7) and the absence of the effect of 
viscosity and elasticity far from the wall (2.8). The conditions of intermediate norm- 
alization, i.e. 

v = a  a t  y+= R, (5.8) 

presets the amplitude factor module, and closes the problem (5.7), (2.7), (2.8) and 
(5.8). The generalized Reynolds equations (5.2) after substituting the known solution 
permit us to  determine a nonlinear profile of the mean velocity. 

According to the above, the mean velocity and energy in the ‘buffer’ region can, 
for reasons of dimensionality, be expressed through (2.3) and (2.4). Hence, for the 
determination of sinusoidal fluctuation parameters the previous conditions of closing 
are retained. Let the mean velocity gradient be expressed as U‘ = (1 +p) / ( l  + $), 
where q~ and $ are the linear functions with respect to  the second-order moments 
specified by (5.2). The values of v and $ are calculated through the intermediate 
normalization (5.8), and the scale factor D is determined from the first condition of 
(2.10) which, taking into account the introduced designations, will take the form 

D4+ [R(p’- $’) + v + $1 o2 +R(p’$- v$.‘) + v$ = 0. (5.9) 

After the determination of D, the mean velocity profile is found by integrating the 
generalized Reynolds equations (5.2) in the range 0 < y < R, beyond which it is 
continued logarithmically with coefficients calculated from (2.15). Hence the mean- 
velocity profile is determined over the whole region of the effect of fluid viscosity and 
elasticity except for its external boundary. 

The algorithm of the solution of the problem is similar to that for a Newtonian fluid. 
The only difference is that the first two equations of (5.7) are coupled. Therefore they 
are integrated by the method of finite-difference factorization with the boundary 
conditions v = v’ = 0 on the wall and v = a,  vw - k2v = 0 a t  y f  = R. Among the four 
roots of the biquadratic equation (5.9), the real positive is chosen. I n  the overall range 
of the elasticity criterion A under study this root did exist and was the only one. 

A numerical solution of the problem was performed via the continuous transition 
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FIGURE 4. Comparison of calculated mean-velocity profiles of viscoelastic Maxwell fluid with 
experimental data by Khabakhpasheva & Perepelitza (1970); x , conjunction points. 
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FIGURE 5. Normal fluctuation velocity: x , conjunction points. 

with respect to the parameter A .  For a special case A = 0 (Newtonian fluid) values of 
all parameters of the solution coincide with the above ((2.14) and (2.16)). With in- 
creasing A from 0 to A, which will be referred to as the threshold value (A,  N l) ,  the 
solution is practically independent of A .  Figure 3 illustrates variations of the GO- 

efficient K of the mean-velocity logarithmic region as a function of A (7 = O ) .  Deviation 
from the Newtonian flow starts at A > A,, K being reduced. The existence of a 
threshold temporal-type value agrees with the experiments of Berman (1977). 

The calculated mean-velocity profiles are in good quantitative agreement with 
experiment (figure 4). Measurement results were taken from the work of Khabakh- 
pasheva & Perepelitza (1970). At an insignificant drag reduction when the length of 
the ‘buffer’ region is small ( A  = 4-41, experimental points also lie on the second 
logarithmic region of the mean-velocity profile. 

As seen from figure 4, in a flow of the Maxwell fluid the thickness of the viscous 
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FIGURE 6. Longitudinal fluctuation velocity: x , conjunction points. 
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FIGURE 7. Transverse fluctuation velocity: x , conjunction points. 

sublayer does not increase. Profiles of the mean velocity in the near-wall region 
(yf < 10) are localized at  a small distance from the linear profile, but deviate from it 
already at y+ = 3-5. The available experimental data by Khabakhpasheva & Pere- 
pelitza (1970) correspond to the obtained results. 

The intensity distribution of turbulent fluctuations qualitatively agrees with 
experiment. The normal fluctuation velocity decreases in the range under study by a 
factor of 2-3 times the increase in A (figure 5) .  Longitudinal and transverse components 
change insignificantly (figures 6 and 7), though it can be noted that near the wall they 
slightly decrease. 
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Hence, on the basis of elementary theory formulated here for a viscous sublayer in 
terms of the Maxwell viscoelastic fluid without application of any empirical constants, 
the main features characterizing the drag reduction in dilute polymer solutions can 
be obtained. Therefore it can be concluded that the viscoelastic properties of solutions 
play a decisive role in drag reduction. The agreement between theory and experiment 
is attained at A values of the order of magnitude corresponding to measurements for 
dilute polymer solutions. Thus A = 4.4 (figure 4) corresponds to h = 1-3 x lod3 s, and 
according to the Hoyt’s (1972) experimental data h N 10-3s. 

6. Viscous layer in Oldroyd fluid 
A Maxwell model that provides a theoretical interpretation for the drag-reduction 

effect, possesses, nevertheless, a definite internal shortcoming. In this model the stress 
jump leads to infinite deformation velocities, which is in disagreement with the 
observed properties of polymer solutions. In addition, in what follows it will be shown 
that not all observed properties of the studied solutions can be described in this way. 
Therefore, for a more detailed analysis of the drag reduction in viscoelastic fluids, we 
will generalize the model viscous-layer theory for a more realistic Oldroyd fluid having 
stress relaxation and retardation times. The constitutive equation for the Oldroyd 
(1950) medium is 

where 

is the tensor of strain velocities, h is the time of stress relaxation, y h  is the retardation 
time and 0 < y < 1. The rheological Maxwell equation (5.1) is a special case of (6.1) 
corresponding to 7 = 0. 

Equations of the averaged motion, being generalized Reynolds equations, have the 
dimensionless form 

In the system of equations for the fluctuational motion let us remove the terms that 
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are quadratic with respect to fluctuations, and then carry out several successive rather 
cumbersome but practically simple transformations similar to the above operations 
and finally we will come to a system of ordinary differential equations for the sinu- 
soidal fluctuation amplitudes, being the generalization of (5.7) : 

'I u = - (v'+i/9w), 
a 

1 
p = - (4' - x' 4 - iax[y+-c) 2,)- 4. 

k2X x 
Here y = 1 + iar]A(y+ - c) .  Boundary conditions for (6.3) remain as before. 

A dimensional analysis is carried out in a similar manner to that in $5. If at  a 
constant value of 7 we assume that h + 00, we will find the range of distances from the 
wall where the intermediate asymptotic equations (2.3) and (2.4) are valid. Con- 
sequently, the conditions of smooth conjunction will have the same form as (2.10) 
and (2.12). The normalization condition (5.9) will also remain unchanged; only the 
expressions for the functions y and $ will be different. 

The problem was solved numerically via the continuous transition regarding the 
parameter A at a constant r] .  The coefficient K of the first logarithmic region of the 
mean velocity as a function of A for various r] is illustrated in figure 3. As seen, the 
threshold value A,, being equal to unity for Maxwell fluid, rises to 5-6 at 7 N 0-9 with 
the increase of r ] .  

As in a Maxwell fluid, the drag-reduction effect is observed with increasing A 
(figure 8). But depending on the parameter 7 the character of the velocity-profile 
behaviour changes. At large retardation times 7 N 0.9, and at A values for the case 
of sufficiently high drag reduction, a distinct increase in the viscous-sublayer thickness 
is observed (figures 8 and 9), r] = 0-95. In  this case the theoretical profiles are in good 
agreement with Rudd's (1972) experimental data. It should be noted that the calcu- 
lated longitudinal fluctuating velocity, which is also in agreement with the Rudd's 
experiments, increases rather significantly (figure 6), 7 = 0.35. The normal fluctuating 
component is damped. 

The thickness of the viscous sublayer does not increase compared with the New- 
tonian flow at low retardation times (figure 9), r ]  = 0.2. In this case the flow structure 
in the near-wall layer is. consistent with the above features characterizing the near- 
wall turbulence of the Maxwell viscoelastic fluid. To compare the calculated velocity 
profiles at  r ]  = 0.2 with experiment, in figure 9 the experimental data of Khabakh- 
pasheva & Perepelitza (1970) are given. The mean-velocity profiles deviate from 
linearity at y+ = 3-5. Nevertheless, at small 7, the extent of drag reduction is higher 
than in the case of large retardation times (figure 3). With increasing A ,  the drop of 
the coefficient K is sharper and the slope of velocity profiles steepens faster. 
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FIGURE 8. Calculated mean-velocity profiles of Oldroyd fluid: x , conjunction points. 

7. Discussion 
The analysis of the near-wall turbulent flow of non-Newtonian Maxwell and Oldroyd 

media in terms of the developed theoretical approach indicates that the fluid elastic 
properties can change the structure of the viscous sublayer and buffer region signi- 
ficantly, and can account for the most essential effects observed experimentally in 
dilute polymer solutions. It holds primarily for the main effect of turbulent friction 
reduction and the associated decrease of the normal velocity fluctuations. The theory 
also describes the threshold character of the effect, implying that after the criterion A 
exceeds some value A ,  the drag crisis takes place, i.e. it decreases sharply and sig- 
nificantly. The rheological property of retardation described by the parameter 7 
smooths the critical character of the drag reduction and increases the threshold value 
A,. It is likely that just this fact accounts for a slight scatter in the empirical tem- 
poral-type correlations determined at  the point of onset of the drag reduction. A 
mechanism for the effect of elastic properties on a fluid flow will be evident if we 
analyse the stress state near the wall. Upon retaining the principa,l terms in the stress 
tensor that donot tend to zero on approaching to the wall, and subtracting the pressure, 

ill = I U' 0 0 

0 
"Y 

Hence the flow of viscoelastic fluid causes near the wall both shear and normal stresses 
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FIGURE 9.  Calculated mean-velocity profiles of Oldroyd fluid in viscous sublayer: 0, 0 ,  experi- 
mental data of Rudd (1 972) ; , 0 ,  experimental data of Khabakhpasheve, & Perepelitza (1970) .  

- 
ull and 322. The effect, which is not small, is associated with the mean-velocity gradient 
U’. Besides the ordinary viscous friction, due to elastic properties, stretching stresses 
appear along the averaged streamlines, increasing with approach to the wall. The 
value 2A ( 1  - 7) is the ratio of the stretching to the viscous stresses (in near-wall scales 
U’(0)  = 1). Experimental data for the relaxation times in polymer solutions provide 
values of A 2 4, i.e. a significant value of the stretching stress. This fact can serve for 
the determination of rheological properties of the solutions under study. 

The analysis of the stress tensor also clarifies a smoothing role of the retardation 
time, in particular the five- to sixfold and greater increase in the threshold values. If 
we expand the velocity profile in a Taylor series in the vicinity of y+ = 0 and assume 
that uz = f (x+,  x+, t+)y++ ..., ug = g(x+, z+, t + ) ~ + ~  + .. ., we obtain 

U’ = l -BA(1-7 ) fgy++ . . .+ f i~~+~+  .... 
In  contrast to the Newtonian case, when the  unity is immediately followed by a 

cubic term, the elasticity of the medium leads to the appearance of linear terms in the 
expansion. If the thickness of the viscous sublayer is determined by the condition 
1 U‘ - 11 < E ,  a t  moderate values of A( 1 - 7) the stress relaxation decreases the sublayer 
thickness, whereas the retardation increases it. At large values of A (1  - 7) we should 
take into account that f and g themselves depend on A and 7. 

These qualitative tendencies agree perfectly with numerical results regarding both 
the dependence of the threshold value of A, on 11 (figure 3) and the viscous-sublayer 
thickness (figures 4 and 8). It is also clear that the stretching stresses, acting in the 
planes parallel to the wall and making them to be akin to elastic membranes, should 
damp the normal fluctuations ug, but do not prevent the planes’ mutual sliding. In  
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complete agreement with this, the calculation provides a decrease in the sublayer vy 
(figure 5), whereas the components v, and v, retain their order of magnitude (figures 
6 and 7 ) .  

In  conclusion it should be noted that the developed non-empirical theory of near- 
wall turbulence permits us t o  perform a correct calculation of the mean-velocity 
distribution and several fluctuational-motion characteristics for a whole class of 
problems associated with turbulent flows of fluids with different rheological properties. 

It has been shown that in a turbulent flow of the Maxwell and Oldroyd media the 
phenomena typical of the Toms effect are observed. In  a certain sense a viscoelastic 
fluid is even more convenient for the application of the above theoretical model, since 
in this case fluctuations become larger scale, thus giving more grounds for the linear- 
ization, and the spectrum narrows significantly, and hence the sinusoidal approxima- 
tion becomes more accurate. The results permit us to hope that the theory can also 
be applied successfully to  other near-wall flows having a rather simple structure of 
fluctuations in a viscous sublayer. 

The authors wish to thank Professor S. S. Kutateladze for his constant support and 
valuable assistance making possible the performance of the present study. 
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